
www.manaraa.com

64 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

Software Development: Agile vs. Traditional

Marian STOICA, Marinela MIRCEA, Bogdan GHILIC-MICU
Bucharest University of Economic Studies, Romania

marians@ase.ro, mmircea@ase.ro, ghilic@ase.ro

Organizations face the need to adapt themselves to a complex business environment, in
continuous change and transformation. Under these circumstances, organization agility is a
key element in gaining strategic advantages and market success. Achieving and maintaining
agility requires agile architectures, techniques, methods and tools, able to react in real time
to change requirements. This paper proposes an incursion in the software development, from
traditional to agile.
Keywords: Software Development, Traditional Models, Agile Models, Agile Architectures,
Agile Techniques, Agile Instruments

Introduction
Increased agility is a magnet to all

organizations, especially for those in private
sector. It will allow a rapid and efficient
adaptation to market changes and gaining a
strategic advantage. Moreover, increased
agility contributes to decreasing the
development time for new processes and
increasing flexibility for existing processes,
where modification and implementation is
required. All that leads to decreased time for
solving client demands, more clients gained,
lower adaptation costs and finally increased
revenue.
In a complex and permanently changing
environment, organization agility is no
longer a necessity but a condition to access
or remain on the market. An agile enterprise
adapts fast to client demands and market
opportunities, gaining competitive
advantages on the market. This can be
achieved only if the stakeholders clearly
understand the working ways of the
organization.
From informational systems point of view,
there are several ways to achieve agility,
among which: Business Process Management
(BPM) for orchestrating independent
functionalities, Service Oriented Architecture

(SOA) for designing and developing such
functionalities and Decision Management
(DM) for management of organization
decisions.

2 Software Development Life Cycle
Development models are various processes
or methodologies, selected to develop the
project according to its purpose and
objectives. Software developments models
help improve the software quality as well as
the development process in general.
There are several models for the software
development life-cycle, each developed for
certain objectives. Software Development
Life Cycle (SDLC) is an environment that
describes activities performed in each stage
of the software development process. SDLC
consists of a detailed plan that describes how
the development, maintenance and
replacement of specific software is
conducted. This is also known as software
development process. [1]
The international standard for SDLC is
ISO/IEC 12207. It aims to define all
activities required to develop and maintain
software. Figure 1 depicts the various stages
of a typical SDLC.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26083404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 65

DOI: 10.12948/issn14531305/17.4.2013.06

Fig. 1. Software development life cycle [2]

Stage 1: Requirements analysis and planning
Analysis of requirements is the most
important stage in SDLC. It is performed by
senior members of the team, using inputs
from the clients, sales department, market
research and industry experts. This
information is then used for a basic project
plan and feasibility study from economic,
operational and technical points of view.
Also, in this stage the team plans the quality
insurance requirements and identifies project
risks. The result of technical feasibility study
consists of definition of carious technical
approaches that can be used to implement the
project with minimal risks.
Stage 2: Definition of requirements
After the requirements are analyzed, product
requirements are clearly defined and
documented. They must be approved by the
client or by the market analysts through SRS
(Software Requirement Specification). The
SRS document lists all product requirements
that must be designed and developed
throughout the project life-cycle.
Stage 3: Product architecture design
SRS is the basic reference from which the
architects set out to create the best

architecture for the product. Usually, at least
one product architecture approach is
proposed, and it is documented in a DDS
(Design Document Specification). This DDS
is revised by all interested parties and the
best approach is selected, based on some
parameters like: risk evaluation, product
robustness, design method, budget and time
constraints.
A design approach clearly defines all
architectural modules of the product, along
with communication and data flows to and
from external modules provided by third
parties (if there are any). Internal design of
all modules in the proposed architecture must
be presented in clear details by the DDS.
Stage 4: Product implementation or
development
In this stage of the SDLC the product
development starts. The source code is
generated during this stage. If the design was
performed in a detailed and organized
manner, the source code can be performed
without complications. Developers must
follow the guidelines of their organization. In
order to generate the code they use
programming tools like compilers,

SDLC

Analysis and
planning

Definition of
requirements

Architecture
design

Impementation,
development

Product testing

Operation and
maintenance

www.manaraa.com

66 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

interpreters, debuggers etc. The source code
is written in high level languages like C/C++,
Delphi, Java, PHP. The programming
language is chosen according to the software
being developed.
Stage 5: Product testing
This stage is usually a subset of all the stages
in modern SDLC models, because testing is
involved in all SDLC stages. Still, this stage
only involves the situation where product
faults are reported, tracked, fixed and re-
analyzed until it complies with the SRS
quality requirements.
Stage 6: Market operation and maintenance
Once the product has been tested, it is ready
to launch on the market. It can be launched
on a limited segment and tested in a real
business environment, then, based on feed-
back received, it can be launched to the
whole market unchanged or with
improvements suggested by clients involved
in tests. After the launch, the maintenance is
performed for the existing client pool.

3 Software Development Models
There are many software development
models and many organizations create and
use their own model. Choosing the model has
a high impact on testing. The independent
phases, applied on all levels are: testing and

validation; management. Among the most
widely development models are:
 Waterfall model;
 V model;
 Incremental model;
 RAD model (Rapid Application

Development);
 Agile model;
 Iterative model;
 Spiral model.

Each model has advantages and drawbacks
and must be selected according to
organization needs. For space reasons, the
following sections will present a brief
description of stages, advantages and
drawbacks and usage [3], [4], [5] for only
two of these models: waterfall model and
incremental model (this one being the base
for all agile software development models).

3.1 Waterfall Model
The waterfall model was defined by Winston
W. Royce in 1970. It is also known as linear-
sequential life cycle model. This model is
easy to understand and use. Each stage must
be completed before next one can start. At
the end of each stage the project is reviewed
to ensure compliance with requirements.

Fig. 2. Waterfall model diagram

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 67

DOI: 10.12948/issn14531305/17.4.2013.06

Some of the advantages of this model are:
 the documentation and structure design

are an advantage when new members
join the team;

 it is easy to understand and use;
 it is easy to coordinate due to the model

rigidity – each stage has an expected
result and an evaluation process;

 stages are implemented one at a time, in
sequence;

 it is recommended for small projects,
with requirements clearly understood.

Some of the drawbacks of this model are:
 some requirements may arise after the

initial requirement gathering was
completed, which influences negatively
the product development;

 not all problems detected during a stage
are completely solved during the same
stage;

 there is no flexibility in partitioning the
project into stages;

 new requirements added by the client
lead to additional costs, because they
cannot be solved in the current edition of
the product;

 it is difficult to estimate the time and
budget for each stage;

 there are no prototypes until the life
cycle is finished;

 if testing detects some problems, it is
very difficult to return to design stage;

 there is a high risk and uncertainty;
 it is not recommended for complex and

object oriented projects.
The waterfall model is recommended for the
following cases:
 requirements are well understood, clear

and final;
 product definition is stable;
 technology is understood;
 there are no ambiguous requirements;
 resources that involve expertise are

freely available;
 it is a short project.

3.2 Incremental Model
In the incremental model the requirements
are divided into subsets. The model involves
multiple development cycles, which makes
the life cycle look like a “multiple waterfall”
model. The cycles are again divided into
smaller cycles, modules easier to manage.
Each module goes through requirement
analysis, design, implementation and testing.
During the first module, a working version of
the software is created. Each following
version adds new features and functionalities
to the previous one. The process continues
until the system is completed (Figure 3).
Some of the advantages of this model are:
 each stage delivers a working product,

that meets some of the client
requirements;

 prototypes are delivered to the client;
 client feed-back is distributed throughout

the entire development process;
 it is more flexible – involves lower costs

when purpose and requirements change;
 it is easy to test and debug during a small

iteration;
 cuts down on initial delivery costs;
 the risk is easier to manage because all

risks are identified and managed during
the iteration;

 when there are new requirements, they
can be introduces in the next prototype.

The model carries some drawbacks too:
 it requires a good planning and design;
 requires a clear and complete definition

of the entire system before it can be
divided and incrementally built;

 total cost is higher than the waterfall
model;

 design errors are harder to fix and
remove;

 incremental approach may easily turn
into “code and repair”.

 the client can see what can be done and
can ask for more;

 object oriented approach provides a
comfortable framework for evolution
development, in an iterative manner.

www.manaraa.com

68 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

Fig. 3. Incremental model diagram

The incremental model is recommended for
the following cases:
 system requirements are clearly defined

and understood;
 major requirements are final. Some

details may change in time;
 early launch is required;
 a new technology is used;
 there are high risk characteristics and

objectives.

4 Gaining Business Agility
The key element of business agility is the
Service-Oriented Integration (SOI) and the
guaranteed path to SOI is SOA. [6] SOA is
used by organizations to increase their agility
and flexibility for dynamic adaptation to the
business environment. BPM has proved its
efficiency in reconfiguring processes to gain
agility. DM helps automate decisions and
allows business policies to be moved to a
central repository. This leads to better
substantiated decisions and furthermore to
increased organization ability to answer to
market changes and opportunities. Achieving
agility requires knowledge of how SOA,
BPM and DM can lead to increased
organization agility and innovation.

To become agile, the organization must
permanently control the dynamic of its own
business processes, human resources and
informational system. Business agility can be
achieved through: human resources agility,
business processes agility and information
technology agility. Service orientation may
be applied to organization level with
beneficial effects on human resources,
business management and information
technology (Figure 4).
Human resource agility can be achieved
through an organizational culture that
provides intensive business and technology
knowledge based work force in all the areas
of the business. Organizational culture must
allow a quick adaptation of the work force
and autonomy of work groups. These allow
global adaptation to micro changes in
business environment.
Business process agility can be achieved
through business process management, based
on organization informational systems. The
principle that lays at eh foundation of agile
organization regarding business processes is
providing the best solution to achieve the
organization purpose. This involves
continuous modeling, simplification and
reconfiguration of processes. Also, it

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 69

DOI: 10.12948/issn14531305/17.4.2013.06

involves the ability to efficiently answer to
changes in the business environment by
using the advantages of IT services and SOA.
Furthermore, combined use of BPM and

SOA facilitates a new stage of flexible
business process development, known as
service oriented business processes.

Fig. 4. Service orientation influence

BPM helps increase the agility of the
business by providing process models easily
adapted to the internal and external business
environment requirements. Some of the
instruments that may be used to achieve
agility of business processes are: Business
Process Model and Notation Designer,
Business Process Execution Language
Server, AJAX Integrated Development
Environment, Enterprise Content
Management.
From the business management point of
view, in a complex decision making process
the managers are faced with difficulties in
making fast decisions with low costs. DM
can be used to help automating decisions,

especially the operational ones. DM helps
raise the quality, consistency and agility of
decisions, in the same time lowering the time
and costs associated with the decision
making process. Also, decision management,
as well as process management, leads to
simpler, more agile and effective client
oriented processes. According to [7], the DM
solution may be defined in four areas:
analysis and collaborative planning,
knowledge acquisition and learning, unified
access and analysis of structural data and
unstructured content and automation of
intelligent processes.
SOA allows DM technologies to implement
business policies as decisional services that

www.manaraa.com

70 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

deliver functionality. Decision services
contain all the conditions and actions
required to make an operational decision.
Each decision service responds to a business
questions for the other services. Combining
DM capabilities with BPM helps fast
implementation of changes in answer to
market pressure, reusing the decision logic in
processes and systems, making the best
decision based on a list of decisions,
optimization of business processes,
integration of intelligence in business process
and gaining competitive advantages. Also,
using DM helps adaptation to changes and
aligning IT systems with business
requirements.
Information technology agility addresses
mainly the technological architecture and
infrastructure through SOA. Technological
agility currently represents a wide field of
research, because IT creates most problems
in achieving agility. Moreover, integration
into organization represents the least mature
category of capabilities, for many
organizations being a goal and not a reality.
SOA may be a paradigm that can solve
integration problems on application level.
SOA provides agility through embedding
application logic into services. Services can
be fast and easy combined with business
rules and analytical services in order to
provide new functionalities and business
agility. The principle that lays at the base of
the organization regarding information
technology is systematic anticipation of
rational use of emerging technologies.
Achieving agility begins with removal of
barriers and, usually, the informatics system
has most of them. In order to respond to
continuous change requirements, businesses
must integrate and connect various systems
and data sources, many locked into isolation
or into proprietary systems.

5 Agile vs. Traditional
Agile methods are based on adaptive
software development methods, while
traditional SDLC models (waterfall model,
for example) are based on a predictive
approach. In traditional SDLC models, teams

work with a detailed plan and have a full list
of characteristics and tasks that must be
completed in the next few months or the
entire life cycle of the product. Predictive
methods completely depend on the
requirement analysis and careful planning at
the beginning of the cycle. Any change that
is to be included will go through a strict
change control management and
prioritization. The agile model uses an
adaptive approach where there is no detailed
planning and only clear future tasks are those
related to the characteristics that must be
developed. The team adapts to dynamic
changes in the product requirements. The
product is frequently tested, minimizing the
risk of major faults in the future. Interaction
with the clients is the strong point of agile
methodology and open communication and
minimal documentation are typical
characteristics of the agile development
environment. Teams collaborate closely and
often are located in the same geographical
space.
While agile SDLC is better suited for small
and medium projects, on large scale
traditional SDLC is still the better choice.
Therefore it is important that the
development team selects a SDLC that is best
suited for project at hand. There are criteria
that can be used by the development team to
identify the dimension of the desired SDLC.
They include team size, geographical
location, size and complexity of the software,
project type, business strategy, engineering
capabilities etc. Also, it is very important for
the team to study the differences, advantages
and drawback of each SDLC before making a
decision. Furthermore, the team must study
the context of the business, industry
requirements and business strategy before
evaluating the candidate SDLCs. It is
important to have a SDLC evaluation and
selection process because it maximizes the
chances to create successful software.
Therefore, selection and adoption of an
appropriate SDLC is a management decision
with long term implications.
Although agile methodologies triumph over
traditional ones in several aspects, there are

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 71

DOI: 10.12948/issn14531305/17.4.2013.06

many difficulties in making them work. One
of them is the significant reduction of
documentation and the claim that the source
code itself should be the documentation. [8]
Thus, developers used to agile methods tend
to insert more comments in source code in
order to clarify and explain. It is difficult for
beginner developers or new members of the
team to complete their tasks when they
cannot fully understand the project. They ask
lots of questions to the experienced
developers and this may delay completion of
the iteration, which can lead to increased
development costs.
On the other hand, traditional methods
emphasize documentation in orientation and
clarification of the project for the
development team, so there is no concern
about not knowing the project details or not
having a knowledgeable developer.
Agile methodologies are well known for the
importance given to communication and
client implication. [9]
For each version delivered, the development
team and the clients will organize a meeting
where the team will present the work done in
current iteration and the clients will provide
feed-back on the delivered software
(improvements on current features or
addition of new ones).
Most times, developers will find the periodic
meeting (usually weekly) boring and tiring
because they have to present the modules
repeatedly, to new members and clients and,
on each iteration, changes may happen as
requested by clients.

The time frame for each iteration is short
(usually weeks). Developers will find the
schedule too tight for each module, even
more so for modules that require complex
processing algorithms. This leads to delays in
each iteration and hardships in establishing
an efficient communication between team
members and the clients.
On the other hand, traditional methodologies
have a well-defined requirements model
before the implementation and coding
process starts and this acts as a reference for
the development team during the coding
process. Clients do not participate in this
stage of the development life cycle. The
development team will perform the coding
according to the documentation provided by
the business analysts until the system is
complete and only then it will be presented to
the clients as final product. Developers are
not concerned about frequent meetings and
have more time to finish the system. This
allows them to provide a better product.
The fact that agile development allows
changes in requirements in an incremental
way lead to two dependency problems in
design: rigidity and mobility. Rigidity means
a change in the system leads to a cascade of
changes in other modules, while mobility
means the inability of the system to include
reusable components because they involve
too much effort or risk. When such problems
are present throughout the system, there must
be a high level restructuring in order to
eliminate unwanted dependencies. [10] Table
1 sum up the differences between agile and
traditional approaches.

Table 1. Differences between traditional and agile development [11] [12] [13]

 Traditional development Agile development

Fundamental
hypothesis

Systems are fully specifiable,
predictable and are developed
through extended and detailed

planning

High quality adaptive software is
developed by small teams that
use the principle of continuous

improvement of design and
testing based on fast feed-back

and change

Management style Command and control Leadership and collaboration
Knowledge
management

Explicit Tacit

www.manaraa.com

72 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

 Traditional development Agile development
Communication Formal Informal

Development model
Life cycle model

(waterfall, spiral or modified
models)

Evolutionary-delivery model

Organizational
structure

Mechanic (bureaucratic, high
formalization), targeting large

organization

Organic (flexible and
participative, encourages social

cooperation), targeting small and
medium organizations

Quality control
Difficult planning and strict

control. Difficult and late testing

Permanent control or
requirements, design and

solutions. Permanent testing

User requirements
Detailed and defined before

coding/implementation
Interactive input

Cost of restart High Low
Development

direction
Fixed Easily changeable

Testing After coding is completed Every iteration
Client involvement Low High
Additional abilities

required from
developers

Nothing in particular
Interpersonal abilities and basic

knowledge of the business

Appropriate scale of
the project

Large scale Low and medium scale

Developers
Oriented on plan, with adequate

abilities, access to external
knowledge

Agile, with advanced
knowledge, co-located and

cooperative

Clients
With access to knowledge,

cooperative, representative and
empowered

Dedicated, knowledgeable,
cooperative, representative and

empowered
Requirements Very stable, known in advance Emergent, with rapid changes

Architecture
Design for current and

predictable requirements
Design for current requirements

Remodeling Expensive Not expensive
Size Large teams and projects Small teams and projects

Primary objectives High safety Quick value

6 Agile Software Development Methods
There are several agile software development
methods available. [14] Although each of
them has a unique approach, they share the
values and visions described by the agile
manifesto. They all involve permanent
communication, planning, testing and
integration. They help develop good
software, but what defines agile methods is
that they encourage collaboration and makes
common decisions good and fast.
Some of the agile software development
methodologies are: Adaptive Software

Development (ASD), Feature Driven
Development (FDD), Crystal Clear, Dynamic
Software Development Method (DSDM),
Rapid Application Development (RAD),
SCRUM, Extreme Programming (XP) and
Rational Unify Process (RUP). Some of them
are described in Table 2. In time several
methods based on some of these values and
principles have emerged. They have been
designated as agile, and some of them are:
 Extreme programming (XP);
 Scrum;

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 73

DOI: 10.12948/issn14531305/17.4.2013.06

 Agile unified process (AUP);
 Agile modeling;
 Essential unified process (EssUP);
 Open unified process (OpenUP);

 Dynamic system development method
(DSDM);

 Feature driven development (FDD);
 Crystal.

Table 2. Main agile development methods with key references [14]

Agile method Description Reference

Crystal
methodologies

A family of methods for teams of various sizes: Clear, Yellow,
Orange, Red, Blue. The most agile methods, Crystal Clear,
concentrate on communication between small teams that develop
non-critical software. Development has seven characteristics:
frequent delivery, reflexive improvement, osmotic
communication, personal safety, concentration, easy access to
expert users and requirements for technical environment.

[15]

Dynamic
software
development
method
(DSDM)

Divides projects into 3 stages: pre-project, project life cycle and
post-project. DSDM is based on nine principles: users
involvement, empowering the project team, frequent delivery,
approaching current needs of the business, iterative and
incremental development, allows reversing the changes, high end
goal is established before project starts, testing during the life
cycle, efficient communication.

[16]

Feature-driven
development

Combines model driven development with agile development,
emphasizing the initial object model, work division into features
and iterative design of each feature. Claims to be best suited for
critical system development. An iteration of a feature has two
stages: design and development.

[17]

Scrum

Concentrates on project management, for situations where initial
planning is difficult, with mechanisms for “empiric process
control”, where feed-back loops are the main element. The
software is developed by a team (that self organizes) in stages
(called “sprints”), starting with planning and ending with
assessment. The features that must be implemented are recorded
in a list of unsolved orders. The client decides which orders are
to be implemented in the next sprint. Team members coordinate
their activity in daily briefings (at the beginning of the day). One
member (chief/master scrum) is responsible with solving issues
that prevent the team from working efficiently.

[18]

Extreme
programming
(XP; XP2)

Concentrates on the best development practices and consists of
12 stages/activities: planning game, small launches, metaphor,
simple planning, testing, refactoring, peer programming,
collective ownership, continuous integration, 40 hour week, on-
site clients and coding standards.
The revised version, XP2, consists of the following primary
practices: whole team, informative work space, work under
pressure, peer programming, stories, weekly cycle, trimester
cycle, 10 minute development, continuous integration,
incremental design etc. There are also 11 additional practices.

[19, 20]

The agile group of methods is based on
iterative and incremental development, where
specifications and solutions come from
collaboration between teams individually
organized, but with a common goal. These

methods are based on 12 principle,
synthesized in the so called Agile Manifesto
published in 2001 [21]:
 client satisfaction, through rapid delivery

of usable software;

www.manaraa.com

74 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

 meeting the specifications, even if it
happens late in the development;

 frequent delivery of usable software
(weekly);

 usable software is the main measure of
progress;

 sustained development, able to keep a
steady rhythm;

 cooperation between developers and
clients;

 face-to-face cooperation is the best way
to communicate;

 projects are built by motivated and
credible persons;

 simplicity;
 individually organized teams;
 adaptation to changing circumstances;
 permanent attention to excellent

technique and good design.
SCRUM is an iterative and incremental
method whose purpose is to help
development teams to concentrate on
established goals and minimize the work
done on less important tasks. SCRUM aims
to keep the simplicity in a complicated
business environment. The term comes from
rugby, where it is a strategy to return a lost
ball into the game by team work. SCRUM
does not provide implementation level
techniques; it focuses on the way the
members a development team should interact
to create a flexible, adaptive and productive
system in a constantly changing
environment. The method was presented in
details by Schwaber and Beedle. SCRUM is
based on two elements: team autonomy and
adaptability. Team autonomy means that
project leaders establish the tasks the team
must perform, but in each iteration the team
is free to decide how to work, with the goal
of increasing team productivity. SCRUM
does not propose specific software
development techniques, but method sand
instruments regarding the management for
various phases, in order to avoid the
confusion created by project complexity and
unpredictability.
“XP is an easy methodology for small to
medium teams that develop software
products with vague or changing

requirements” is the definition given by Kent
Beck, the creator of extreme programming
[22]. Extreme programming (XP) is a
modern development model, inspired from
RUP. Program development does not mean
hierarchies but collaboration within the team.
Team members are encouraged to assert their
personality and offer and receive knowledge
and become great programmers. XP
considers that program development means
first of all writing programs. It is suited for
projects with dynamic requirements or those
that are not well defined from the start. There
must be a partnership between client and
programmers. It does not generate too much
documentation. XP describes four main
activities: coding – main activity; testing –
every module must be tested; listening – the
programmer must communicate with the
client in order to understand his needs;
design – building a correct architecture of the
system will lead to an efficient system and
reduce unnecessary dependencies between
modules.

7 Conclusions
No matter what model is chosen for
developing software applications, this
activity involves complex processes that are
often predisposed to errors. That is why,
beyond agility or traditionalism, an important
role goes to testing and validation. Any high
quality software system, with professional
development and implementation must be
tested and validated before going into
production. The client must know that the
system was developed and implemented
according to the project specifications. Also,
the client must be sure the project
functionality is correct (to be continued).

References
[1]http://www.techopedia.com/definition/221

93/software-development-life-cycle-sdlc
[2]http://www.tutorialspoint.com/sdlc/sdlc_o

verview.htm
[3] http://istqbexamcertification.com/what-

are-the-software-development-models/
[4]http://www.slideshare.net/J.T.A.JONES/s

oftware-development-life-cycle-model-

www.manaraa.com

Informatica Economică vol. 17, no. 4/2013 75

DOI: 10.12948/issn14531305/17.4.2013.06

1392777
[5]http://www.tutorialspoint.com/sdlc/sdlc_overv

iew.htm
[6] J. Bloomberg, Why service-oriented

management? 2002, SearchSOA.com.
Retrieved September 15, 2011, from
http://searchsoa.techtarget.com/tip/Why-
service-oriented-management

[7] D. Vesset, M. Fleming, H. Morris, S.
Hendrick, B. McDonough, S. Feldman,
E. Traudt, C. Olofson and M. Webster,
Worldwide Decision Management
Software 2010–2014 Forecast: A Fast-
Growing Opportunity to Drive the
Intelligent Economy. IDC. Retrieved
September 15, 2011, from
http://www.idc.com/research/viewdocsyn
opsis.jsp?container Id=226244

[8] L.R. Vijayasarathy, Agile Software
Development: A survey of early adopters.
Journal of Information Technology
Management Volume XIX, Number 2.
2008

[9] K. Peterson, A Comparison of Issues and
Advantages in Agile and Incremental
Development between State of the Art
and an Industrial Case. Journal of System
and Software. 2009

[10] G.K. Henssen, Maintenance and Agile
Development: Challenges, Opportunities
and Future Directions. 2009

[11] S. Nerur, R. Mahapatra, G. Mangalaraj,
Challenges of migrating to agile
methodologies, Communications of the
ACM (May) (2005) 72– 78

[12]http://www.producao.ufrgs.br/arquivos/disci
plinas/507_artigo_3_empirical_systematic_re
vi ew.pdf

[13] Get Ready for Agile Methods, with
Care,Barry Bohem, IEEE Ianuarie 2002,
tabel 1, pg. 68

[14]http://www.slideshare.net/J.T.A.JONES/
software-development-life-cycle-model-
1392777

[15] A. Cockburn, Crystal Clear: A Human-
Powered Methodology for Small Teams,
Addison-Wesley, 2004, ISBN 0-201-
69947-8

[16] J. Stapleton, DSDM: Business Focused
Development, second ed., Pearson
Education, 2003, ISBN 978-0321112248

[17] S.R. Palmer, J.M. Felsing, A Practical
Guide to Feature-driven Development,
Prentice Hall, Upper Saddle River, NJ,
2002, ISBN 0-13-067615-2

[18] K. Schwaber, M. Beedle, Agile
Software Development with Scrum,
Prentice Hall, Upper Saddle River, 2001

[19] K. Beck, Extreme Programming
Explained: Embrace Change, Addison-
Wesley, 2000, ISBN 0-201-61641-6

[20] K. Beck, Extreme Programming
Explained: Embrace Chage, second, ed.,
Addison-Wesley, 2004, ISBN 978-
0321278654

[21]http://share.pdfonline.com/af77ce72a559402
6b7be919e08f6e6b8/agile.htm

[22] Kent Beck 2000. Extreme Programming
Explained Addison-Wesley Publishing
Co

Marian STOICA received his degree on Informatics in Economy from the
Bucharest University of Economic Studies in 1997 and his doctoral degree in
economics in 2002. Since 1998 he is teaching in Academy of Economic
Studies from Bucharest, at Economic Informatics and Cybernetics
Department. His research activity, started in 1996 and includes many themes,
focused on management information systems, computer programming and
information society. The main domains of research activity are Information

Society, E-Activities, E-Working, and Computer Science. The finality of research activity still
today is represented by over 50 articles published, 9 books and over 20 scientific papers
presented at national and international conferences. Since 1998, he is member of the research
teams in over 15 research contracts with Romanian National Education Ministry and project
manager in 5 national research projects.

www.manaraa.com

76 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.06

Marinela MIRCEA, associate professor, PhD, currently working with
Bucharest University of Economic Studies, Faculty of Cybernetics, Statistics
and Informatics, Department of Economic Informatics and Cybernetics.
Competence areas: information system, Business Intelligence. Research in
the fields of in-formation system, Business Intelligence, classification
techniques. Author of 6 books and more than 50 papers published in national
and international journals.

Bogdan GHILIC-MICU received his degree on Informatics in Economy
from the Bucharest University of Economic Studies in 1984 and his doctoral
degree in economics in 1996. Between 1984 and 1990 he worked in
Computer Technology Institute from Bucharest as a researcher. Since 1990
he teaches at Bucharest University of Economic Studies from Bucharest, at
Economic Informatics and Cybernetics Department. His research activity,
started in 1984 includes many themes, like computers programming, software

integration and hardware testing. The main domain of his last research activity is the new
economy – digital economy in information and knowledge society. Since 1998 he managed
over 25 research projects like System methodology of distance learning and permanent
education, The change and modernize of the economy and society in Romania, E-Romania –
an information society for all, Social and environmental impact of new forms of work and
activities in information society.

